Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells.

نویسندگان

  • Jan Hrabeta
  • Tomas Groh
  • Mohamed Ashraf Khalil
  • Jitka Poljakova
  • Vojtech Adam
  • Rene Kizek
  • Jiri Uhlik
  • Helena Doktorova
  • Tereza Cerna
  • Eva Frei
  • Marie Stiborova
  • Tomas Eckschlager
چکیده

Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Aggressive cell growth and chemoresistance are notorious obstacles in neuroblastoma therapy. Exposure to the anticancer drug ellipticine inhibits efficiently growth of neuroblastoma cells and induces apoptosis in these cells. However, ellipticine induced resistance in these cells. The upregulation of a vacuolar (V)-ATPase gene is one of the factors associated with resistance development. In accordance with this finding, we found that levels of V-ATPase protein expression are higher in the ellipticine-resistant UKF-NB-4ELLI line than in the parental ellipticine-sensitive UKF-NB-4 cell line. Treatment of ellipticine-sensitive UKF-NB-4 and ellipticine-resistant UKF-NB-4ELLI cells with ellipticine-induced cytoplasmic vacuolization and ellipticine is concentrated in these vacuoles. Confocal microscopy and staining of the cells with a lysosomal marker suggested these vacuoles as lysosomes. Transmission electron microscopy and no effect of an autophagy inhibitor wortmannin ruled out autophagy. Pretreatment with a V-ATPase inhibitor bafilomycin A and/or the lysosomotropic drug chloroquine prior to ellipticine enhanced the ellipticine‑mediated apoptosis and decreased ellipticine-resistance in UKF-NB-4ELLI cells. Moreover, pretreatment with these inhibitors increased formation of ellipticine-derived DNA adducts, one of the most important DNA-damaging mechanisms responsible for ellipticine cytotoxicity. In conclusion, resistance to ellipticine in the tested neuroblastoma cells is associated with V-ATPase-mediated vacuolar trapping of this drug, which may be decreased by bafilomycin A and/or chloroquine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells.

It has been suggested that the inappropriate sequestration of weak-base chemotherapeutic drugs in acidic vesicles by multidrug-resistance (MDR) cells contributes to the mechanisms of drug resistance. The function of the acidic lysosomes can be altered in MDR cells, and so we investigated the effects of lysosomotropic agents on the secretion of lysosomal enzymes and on the intracellular distribu...

متن کامل

The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells.

Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts mediated by cytochromes P450 and peroxidases. Here, the molecular mechanism of DNA-mediated ellipticine action in human neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cancer cell lines was investigated. Treatment of neuroblastoma ce...

متن کامل

The comparison of cytotoxicity of the anticancer drugs doxorubicin and ellipticine to human neuroblastoma cells

Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts mediated by cytochromes P450 and peroxidases. Here, the cytotoxicity of ellipticine to human neuroblastoma derived cell lines IMR-32 and UKF-NB-4 was investigated. Treatment of neuroblastoma cells with ellipticine was compared wi...

متن کامل

Ellipticine cytotoxicity to cancer cell lines — a comparative study

Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of action. This anticancer agent should be considered a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its cytochrome P450 (CYP)- and/or peroxidase-mediated activation to species forming covalent DNA adducts. Ellipticine can also act as an inhibitor or inducer of biotransformat...

متن کامل

Analysis of covalent ellipticine- and doxorubicin-derived adducts in DNA of neuroblastoma cells by the ³²P-postlabeling technique.

BACKGROUND Ellipticine and doxorubicin are antineoplastic agents, whose action is based mainly on DNA damage such as intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts. The key target to resolve which of these mechanisms are responsible for ellipticine and doxorubicin anticancer effects is the development of suitable methods for identifying their individual DNA-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2015